

ACKNOWLEDGMENT

The authors wish to express their appreciation to H. Rijpert for the care with which he carried out the measurements, and to J. van Heuven for constructive criticism of this paper.

REFERENCES

- [1] E. H. Putley, "The detection of sub-mm radiation," *Proc. IEEE*, vol. 51, pp. 1412-1423, November 1963.
- [2] —, "The ultimate sensitivity of sub-mm detectors," *Infrared Phys.*, vol. 4, pp. 1-8, 1964.
- [3] W. Culshaw, "Millimeter wave techniques," *Advances in Electronics and Electron Physics*, vol. 15, pp. 197-263, 1961.
- [4] G. Burroughs and A. Bronwell, "High-sensitivity gas tube detector for microwaves," *Tele-Tech*, vol. 11, pp. 62-63, August 1952.
- [5] A. D. White, "Microwave detection with gas tubes," Federal Telecommunication Labs., Final Rept. A.D. Rept. 25525, 1953.
- [6] M. A. Lampert and A. D. White, "Microwave technique for studying discharges in gases," *Elec. Commun.*, vol. 30, pp. 124-128, June 1953; *Phys. Rev.*, vol. 89, p. 337, January 1953.
- [7] B. J. Udelson, "Effect of microwave signals incident upon different regions of a d.c. hydrogen glow discharge," *J. Appl. Phys.*, vol. 28, pp. 380-381, March 1957.
- [8] G. D. Lobov, "A gas discharge detector of microwave oscillations," *Radio Engineering and Electronics*, vol. 6, no. 1, pp. 173-186, 1961.
- [9] G. D. Lobov and V. V. Zakharov, "Variation of directional electron current in a gaseous discharge acted upon by a microwave field," *Radio Engrg. Electronic Phys.*, vol. 7, pp. 614-624, 1962.
- [10] D. Walsh, "A new type of cold cathode microwave power monitor diode," *Microwave J.*, vol. 5, p. 126, December 1962.
- [11] D. J. Knight and D. Walsh, "Millimetre wave harmonics from a gas discharge," *1963 Proc. IVth Internat'l Conf. on Microwave Tubes*, pp. 337-339.
- [12] D. Weighton, "Detector or frequency changer for radio frequency oscillations," U. S. Patent 2,446 118, July 27, 1948.
- [13] J. F. Zaleski, "Gas-filled diode discharge tube," U. S. Patent 2,765 445, October 20, 1956.
- [14] L. Malter, "Detector circuit," U. S. Patent 2,823 306, February 11, 1958.
- [15] A. D. White, "Gas tube microwave detector," U. S. Patent 2,877 417, March 10, 1959; also "Gas tube microwave detector," U. S. Patent 2,928 000, March 8, 1960.
- [16] J. M. Anderson, "Two-anode discharge detector for microwaves," U. S. Patent 2,964 675, December 13, 1960; also "Gaseous discharge structures," U. S. Patent 3,050 687, August 21, 1962.
- [17] P. J. W. Severin, "The interaction of microwaves with the cathode fall and negative glow discharge," *Philips Research Repts. Suppl.*, no. 2, pp. 1-89, 1965.
- [18] W. E. Lothaller and P. H. G. van Vlodrop, "A new family of gas-filled diodes," *Electronic Applic.*, vol. 23, pp. 89-109, 1962.
- [19] *Philips Electronic Measuring and Microwave Instruments*, Catalogue 1965, p. 108.
- [20] A. van der Ziel and E. R. Chenette, "Noise and impedance measurements in voltage regulator tubes," *Physica*, vol. 23, pp. 943-952, 1957.
- [21] P. J. W. Severin, "The low frequency impedance of the cathode fall region," *J. Electronics and Control*, vol. 16, pp. 381-391, April 1964.
- [22] S. O. Rice, "Mathematical analysis of random noise," *Bell Sys. Tech. J.*, vol. 24, pp. 46-156, January 1945.

Corrections

The following has been called to the attention of the Editor.

Charles W. Steele, "A Nonresonant Perturbation Theory," Vol. MTT-14, pp. 70-74, February 1966.

Equation (35) applies only to linearly polarized electric and magnetic fields at the point of perturbation. (This restriction was not stated.) Equation (34) is, however, more general and applies to the elliptically polarized waves as well.

Edward G. Cristal, "Band-Pass Spurline Resonators" (Correspondence), Vol. MTT-14, pp. 296-297, June 1966.

Equation (3) should have read

$$D = \frac{Y_{oo}^a - Y_{oe}^a}{2} = \frac{Y_{oo}^b - Y_{oe}^b}{2}. \quad (3)$$

Figures 1 and 2, as follows, should have appeared in place of the ones printed.

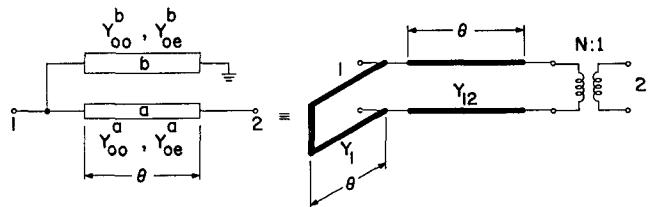


Fig. 1. Band-stop spurline resonator and its open-wire-line equivalent network.

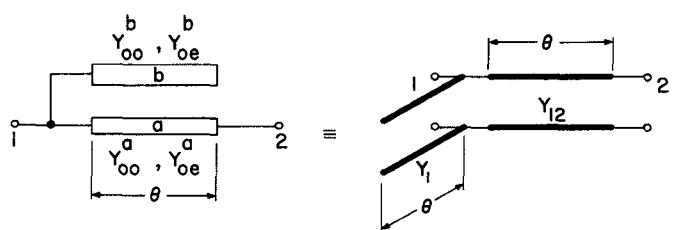


Fig. 2. Band-pass spurline resonator and its open-wire-line equivalent network.